The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

Evapotranspiration in Semi-Arid Climate : Remote Sensing vs. Soil Water Simulation

Author

  • Hedia Chakroun
  • Nessrine Zemni
  • Ali Benhmid
  • Vetiya Dellaly
  • Fairouz Slama
  • Fethi Bouksila
  • Ronny Berndtsson

Summary, in English

Estimating crop evapotranspiration (ETa) is an important requirement for a rational assessment and management of water resources. The various remote sensing products allow the determination of crops’ biophysical variables integrated in the evaluation of ETa by using surface energy balance (SEB) models. This study compares ETa estimated by the simplified surface energy balance index (S-SEBI) using Landsat 8 optical and thermal infra-red spectral bands and transit model HYDRUS-1D. In semi-arid Tunisia, real time measurements of soil water content (θ) and pore electrical conductivity (ECp) were made in the crop root zone using capacitive sensors (5TE) for rainfed and drip irrigated crops (barley and potato). Results show that HYDRUS model is a fast and cost-effective assessment tool for water flow and salt movement in the crop root layer. ETa estimated by S-SEBI varies according to the available energy resulting from the difference between the net radiation and soil flux G0, and more specifically according to the assessed G0 from remote sensing. Compared to HYDRUS, the ETa from S-SEBI was estimated to have an R2 of 0.86 and 0.70 for barley and potato, respectively. The S-SEBI performed better for rainfed barley (RMSE between 0.35 and 0.46 mm·d−1) than for drip irrigated potato (RMSE between 1.5 and 1.9 mm·d−1).

Department/s

  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World
  • Division of Water Resources Engineering
  • LTH Profile Area: Water

Publishing year

2023-03

Language

English

Publication/Series

Sensors

Volume

23

Issue

5

Document type

Journal article

Publisher

MDPI AG

Topic

  • Water Engineering

Keywords

  • 5TE sensor
  • barley
  • evaporative fraction
  • evapotranspiration
  • HYDRUS-1D
  • potato
  • S-SEBI

Status

Published

ISBN/ISSN/Other

  • ISSN: 1424-8220