Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Surface deformation in an aquifer system

Together with Ryan G. Smith (Missouri University of Science and Technology), Jingyi Chen (University of Texas), and Rosemary Knight (Stanford University), CMES researcher Hossein Hashemi has co-authored the article "Apportioning deformation among depth intervals in an aquifer system using InSAR and head data", available online in the Hydrogeology Journal.

Abstract

Land surface subsidence due to excessive groundwater pumping is an increasing concern in California, USA. Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique for measuring centimeter-to-millimeter surface deformation at 10–100 m spatial resolution. Here, a data-driven approach that attributes deformation to individual depth intervals within an aquifer system by integrating head data acquired from each of three screened intervals in a monitoring well with InSAR surface deformation measurements was developed. The study area was the Colusa Basin in northern Central Valley. To reconstruct the surface deformation history over the study area, 13 ALOS-PALSAR scenes acquired between 2006 and 2010 were processed. Up to ~3-cm year−1 long-term subsidence and up to ~6 cm seasonal subsidence were observed using the InSAR technique. The technique developed in this paper integrates the InSAR-observed seasonal deformation rate and the co-located head measurements in multiple depth intervals to estimate the elastic skeletal storage coefficient, the time delay between the head change and the observed deformation, and subsequently the deformation of each depth interval. This technique can be implemented when hydraulic head measurements within each depth interval are not correlated with each other. Using this approach, the depth interval that contributed the most to the total subsidence, as well as storage parameters for all intervals, are estimated. The technique can be used for identification of the depth interval within the aquifer system responsible for deformation.

Read and download the full article here

Hossein's staff page