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Abstract: Capacitance sensors are widely used in agriculture for irrigation and soil management 
purposes. However, their use under saline conditions is a major challenge, especially for sensors 
operating with low frequency. Their dielectric readings are often biased by high soil electrical 
conductivity. New calculation approaches for soil water content (θ) and pore water electrical 
conductivity (ECp), in which apparent soil electrical conductivity (ECa) is included, have been 
suggested in recent research. However, these methods have neither been tested with low-cost 
capacitance probes such as the 5TE (70 MHz, Decagon Devices, Pullman, WA, USA) nor for field 
conditions. Thus, it is important to determine the performance of these approaches and to test the 
application range using the 5TE sensor for irrigated soils. For this purpose, sandy soil was collected 
from the Jemna oasis in southern Tunisia and four 5TE sensors were installed in the field at four soil 
depths. Measurements of apparent dielectric permittivity (Ka), ECa, and soil temperature were 
taken under different electrical conductivity of soil moisture solutions. Results show that, under 
field conditions, 5TE accuracy for θ estimation increased when considering the ECa effect. Field 
calibrated models gave better θ estimation (root mean square error (RMSE) = 0.03 m3 m−3) as 
compared to laboratory experiments (RMSE = 0.06 m3 m−3). For ECp prediction, two corrections of 
the Hilhorst model were investigated. The first approach, which considers the ECa effect on K’ 
reading, failed to improve the Hilhorst model for ECp > 3 dS m−1 for both laboratory and field 
conditions. However, the second approach, which considers the effect of ECa on the soil parameter 
K0, increased the performance of the Hilhorst model and gave accurate measurements of ECp using 
the 5TE sensor for irrigated soil.  

Keywords: soil salinity; soil water content; FDR sensor; soil pore water electrical conductivity; 
sensor calibration and validation; real time monitoring 

 

1. Introduction 

In arid and semiarid countries, such as Tunisia, irrigation is necessary for improved agricultural 
production. Water resources with good quality are limited, resulting in the use of low-quality 
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irrigation water. This can induce soil salinization, leading to crop yield reduction, decreasing the 
agricultural productivity, and causing general income loss [1,2]. Thus, accurate monitoring of soil 
salinity in time and space is of great importance for precision irrigation scheduling to save water and 
avoid soil degradation. Over the last decades, soil dielectric sensors have been developed to measure 
apparent electrical conductivity (ECa) from which real soil salinity, the soil pore electrical 
conductivity (ECp), can be estimated [3]. Time domain reflectometry (TDR) has been established as 
the most accurate dielectric technique to estimate both volumetric water content (θ) and ECp in soils 
providing automatic, simultaneous, and continuous readings [4]. The efficiency of the TDR method 
has led to development of other techniques based on similar principles, such as capacitance methods. 
Some examples are the WET (Delta-T Devices Ltd., Cambridge, UK) and the 5TE (Decagon Devices 
Inc., Pullman, WA, USA) sensors, both based on frequency domain reflectometry (FDR). Compared 
to TDR, FDR sensors use a fixed frequency wave instead of a broad-band signal that makes them 
cheaper and smaller [5]. Dielectric methods are based on determination of apparent soil electrical 
conductivity (ECa) and soil apparent dielectric permittivity (Ka) [6]. Many models for the 
relationships between Ka and θ [4,7], ECa-θ, and ECa-ECp-Ka have been proposed in recent research 
[3,8–10]. However, dielectric properties are affected by physical and chemical soil properties. For 
example, high ECa affects the wave propagation, leading to errors in the estimation of Ka [11,12]. 
Thus, it is important to improve θ and ECp prediction models.  

Hilhorst [8] presented a theoretical model describing a linear relationship between ECa and Ka 
to predict ECp. This linear model can be used in a wide range of soil types without soil-specific 
calibration. Persson [13] evaluated the Hilhorst model using TDR in three sandy soils and confirmed 
the accuracy of the linear model with significant dependency on soil type. Many researchers [14–17] 
have tested the Hilhorst model using the WET sensor and showed that it can be improved with soil 
specific calibration. Using the WET sensor, improved correction of the Hilhorst model was proposed 
by Bouksila et al. [18], using loamy sand soil with about 65% gypsum. They found that the accuracy 
of ECp prediction is very poor when using standard soil parameters (K0). Thus, they proposed a 
correction by introducing a third-order polynomial fitted to the K0–ECa relationship instead of using 
the default K0. Kargas et al. [6] introduced a linear permittivity corrected model, proposed by 
Robinson et al. [5], in the Hilhorst relationship. They found that the correction depends on soil 
characteristics and that it is valid for ECa close to 2 dS m−1. These approaches consider the ECa effect 
on the prediction of ECp. However, research has not been performed using simultaneous controlled 
laboratory and field-scale experiments where effects of heterogeneity, root density, insect burrowing, 
etc., affect the observations [19]. Ideally, sensor calibration should be performed in structured soils 
due to its importance for pore size distribution and associated matrix potential [20]. Research has 
shown that calibration in repacked soil columns differs from calibration in disturbed soil used in 
laboratory experiments [21]. In addition, intrinsic soil factors such as soil temperature, presence of 
gravel, and microorganisms affect the soil structure and porosity contributing to the variability in 
ECa and Ka measurements under field conditions as compared to measurements in the laboratory 
[19]. 

Nowadays, farmers are embracing precision agriculture using sensors with high accuracy and 
low cost to increase yields and maintain the sustainability of irrigated land. The 5TE dielectric soil 
sensor, which also uses the Hilhorst model for ECp estimation, was introduced in 2007 and it is much 
cheaper than the WET sensor [22]. Several recent studies have investigated the 5TE probe in 
agricultural applications [2,23,24]. The 5TE sensor has electrodes at the end of the probe that are 
influenced by soil density making them sensitive to any variation in soil structure and θ content [25]. 
Despite this fact, most studies on the 5TE sensor performance [16,26,27] have been carried out under 
laboratory conditions. Thus, almost no research has been done in the field for testing its performance 
for ECp estimation, neither with the most used linear Hilhorst model nor with the more recent ECp 
approach proposed in literature. Another important practical aspect is to determine the application 
range of these sensors for irrigated soils under saline conditions. For example, it is important to 
determine at what ECa threshold the dielectric losses are no longer negligible and need to be 
corrected for. Furthermore, there is a lack of understanding of how laboratory calibration can be 
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translated into field conditions. Thus, the sensors must be calibrated and validated under both 
conditions in order to assess the errors associated with translating one to the other [28].  

In view of the above, the objective of the present study was to assess the performance of the 5TE 
sensor to estimate soil water content and soil pore electrical conductivity for a representative sandy 
soil used for cultivation of date palms. Both standard models and a novel approach using corrected 
models to compensate for high electrical conductivity were used. Results from both field and 
laboratory experiments were compared. The location of the field experiments was the Jemna oasis, 
southern Tunisia. 

2. Materials and Methods 
Soil parameter acronyms, data source, sensor specification and models used in the present work 

were presented in appendix 1. 

2.1. Theoretical Considerations  

Any porous medium, such as soils, can be characterized by its permittivity, which is a complex 
quantity (K) composed of a real part (K’) describing energy storage, and an imaginary part (K’’) 
describing energy loss: K = K′ − j K′′     with j = √−1 (1) 

For soils with low salinity, it is often assumed that the polarization and conductivity effects can 
be neglected [4]. Under such conditions, the effect of K” is eliminated and K’ becomes equal to K, 
represented by Ka as the apparent dielectric constant [4]. Under saline conditions, the imaginary part 
of the dielectric permittivity increases with ECa, leading to error in the permittivity measurement. 
This problem becomes important for frequencies lower than 200 MHz [6]. According to Campbell 
[29], for a frequency range of 1–50 MHz, conductivity is the most important mechanism related to 
energy loss. However, using the hydra impedance probe, Kelleners and Verma [30] found that, in 
general, the total energy loss is related to relaxation loss except for fine sandy soil, where it is equal 
to zero at 50 MHz . 

2.1.1. Permittivity-Corrected Linear Model  

Many researchers [5,17,31,32] have studied how well low-frequency capacitance sensors 
measure Ka and to what degree it is affected by K’’. In general, it has been shown that the most 
important factor to consider is the conductivity effect on Ka, whereas the effect of relaxation losses 
appears to be small [4,6]. Thus, it is possible to correct the Ka reading by introducing a term for the 
ECa effect. Based on the work of Whalley [32], Robinson et al. [5] proposed a permittivity-corrected 
linear model where the theoretical permittivity can be considered equivalent to the refractive index 
of measurements by the TDR. Robinson et al. [5] conducted experiments using TDR and capacitance 
dielectric sensor in sandy soils with high ECa levels (up to 2.5 dS m−1) and they proposed a linear 
model that includes the ECa effect on the Ka prediction according to: √Kᇱ = √Ka − 0.628 ECa (2) 

From this equation, we notice that the increase of ECa (dS m−1) leads to an increase in Ka. Using 
Equation (2), a corrected permittivity K’ can be determined eliminating the ECa effect [6]. 

2.1.2. Water Content Model 

The dielectric constant is about 80 for water (at 20 °C), 2 to 5 for dry soil, and 1 for air. Therefore, 
Ka is highly dependent on θ. Various equations for the Ka vs. θ relationship have been published. 
The most used θ-model is a third-order polynomial [4]. However, Ledieu et al. [7] showed that there 
is a simpler linear relationship for the θ prediction with only two empirical parameters, of the form: θ = a√Ka + b (3) 
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where a and b are fitting parameters. 
Figure 1 shows a schematic of calibration and validation possibilities for θ estimations that were 

used in the present study. The calibration consisted of fitting of parameters in different models 
(Figure 1). Optimal values for a and b, vs. a’ and b’ were determined by linear regression in the 
relationship √Ka-θm denoted as the CAL-Ka model (Figure 1, Step-A.1) and √K’-θm denoted as CAL-
Kar model (Figure 1, Step-A.2), respectively. The θm was measured in experiments for different 
salinity levels. The standard Ledieu et al. [7] model (Figure 1) was used for comparison purposes as 
it is the simplest known model for mineral soil. The different steps (A.1 and A.2) were first completed 
using laboratory experiments (laboratory calibration) and then using field data (field calibration). The 
laboratory and field calibrated models were then compared with each other (Figure 1, Step-A.3). 
Finally, we used field data (step B.1, B.2, and B.3) to validate the laboratory experiments (laboratory 
model validation). 

 

Figure 1. Schematic of θ calibration and validation possibilities investigated in the present study. 
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2.1.3. Pore Water Electrical Conductivity Model 

Different studies [33,34] have shown that ECa depends on both θ and ECp. Malicki et al. [35] 
and Malicki and Walczak [9] found that for Ka > 6 and when ECp is constant, the relationship between 
Ka and ECa is linear. An empirical ECp–ECa–Ka model has, thus, been proposed. Based on their 
results, Hilhorst [8] presented the following equation applicable when θ ≥ 0.10 m3 m−3: 

ECp = ( K୵ (Ka − K଴) ) × ECa (4) 

where Kw is the dielectric constant of the pore water (equal to 80.3) and K0 is a soil parameter equal 
to Ka when ECa = 0 (see [8], for details). According to Hilhorst [8], the K0 parameter depends on soil 
texture but is independent of ECa. He found the range of K0 to be between 1.9 and 7.6. For best results, 
this should be determined experimentally for each soil type. For most soils, a value of 4.1 has been 
recommended. One should notice, that in the Hilhorst model (Equation (4)), the Ka, Kw, and K0 
represent the real part of the dielectric constant only. From the linear relationship ECp = f (ECa), the 
slope that is inversely proportional to ECp and intercept K0 can be determined. 

 
Figure 2. Schematic of electrical conductivity (ECp) calibration and validation used in the present 
paper. 

In the present study, the Hilhorst model (Figure 2, Step-C.1) was tested using varying K0 soil 
parameters (4.1, 6 and 3.3). The K0 = 4.1 is the default value recommended by Hilhorst, K0 = 6 is the 
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recommended value in the 5TE manual [36] while K0 = 3.3 is the value measured with distilled water 
according to the WET sensor manual [37]. 

Inspired by Bouksila et al. [18] and Kargas et al. [6], a modification of the Hilhorst model was 
investigated. Accordingly, a permittivity-corrected linear equation (Equation (2)) can be introduced 
in the Hilhorst model (Figure 2, Step-C.2) and ECp is predicted with two different K0 values (K0 = 4.1 
and K0 = 3.3). Beside this, the soil fit parameter K0 is calculated for each salinity level by minimizing 
the mean square error (MSE) of the estimated ECp in the Hilhorst model (Step-C.3.1). The best fit K0 
parameters are then plotted against ECa for the seven different ECp and a third-order polynomial 
function is determined (Step-C.3.2), and introduced in the Hilhorst model (Step-C.3). Finally, we used 
field data (step D.1, D.2, and D.3) to validate the laboratory experiments (laboratory model 
validation). 

The temperature is an important factor influencing the electrical conductivity measurements; 
indeed, all ECa reading were adjusted in the present work using Equation (5). Besides, during 
experiments the temperature effect on Kw parameter was considered using the recommended 
temperature correction equation in the 5TE manual [36].  ECaଶହ = ECa [1 − ((T − 25)  ×  0.02)] (5) 

Measured Ka ,ECa, and T in laboratory and field experiments are converted to ECp using the 
Hilhorst [8] model (Step-C.1), Kargas et al. [6] approach ( Step-C.2), and Bouksila et al. [18] approach 
(Step-C.3), denoted as H, MHK, and MHB, respectively. 

The different approaches in Figures 1 and 2 have not been tested before using the 5TE sensor. 
The approaches CAL-Kar, MHK and MHB have previously only been tested once under controlled 
laboratory condition using the WET sensor. The novelty of the present work is to validate these 
approaches under field condition using the low cost capacitance sensor 5TE. In addition, the MHB 
approach developed by Bouksila et al. [18], used an experimentally determined K0 = f (ECa) 
relationship. Our new approach instead uses a K0 derived from best-fit parameter for each ECp level, 
which make the application of MHB approach much easier since there is no need for the K0 laboratory 
experiment. 

Model performance for θ and ECp, was evaluated using both the root mean square error (RMSE) 
and coefficient of determination (R2). In addition, mean relative error (MRE) and coefficient of 
variation (CV) were used for ECp and θ, respectively.  

2.2. Study Area  

The field study was conducted in the Jemna oasis (33°36’15.”N, 9°00’39.”E), belonging to the 
Agricultural Extension and Training Agency (AVFA) located in the Kebeli Governorate, southern 
Tunisia. The oasis is equipped with a micro-irrigation system. The main crop is adult date-palm trees. 
The climate is arid with an annual rainfall of less than 100 mm, which is insufficient to sustain 
agriculture. The annual potential evapotranspiration is about 2000 mm [38]. Groundwater, situated 
at 17 m soil depth, with an electrical conductivity (ECiw) of about 3.5 dS m−1, is used for irrigation. 
The pH of groundwater is 7.8 and the geochemical facies is sodium chloride. Soil samples were 
collected from the top soil at 0–0.5 m depth. The soil was leached with distilled water in order to 
remove soluble salts and oven dried (105 °C) for 24 h. Then, the soil was passed through a 2 mm 
sieve. Soil particle size distribution was determined using the sedimentation method (pipette and 
hydrometer) and the electrical conductivity of saturated soil paste extract (ECe) was measured 
according to the United States Department of Agriculture (USDA) [39]. A summary of soil properties 
is presented in Table 1.  

Table 1. Particle size percentage, pH and electrical conductivity of saturated soil paste extract (ECe) 
of investigated soil samples. 

Depth 
(m) Clay (%) 

Fine Silt 
(%) 

Coarse Silt 
(%) 

Fine Sand 
(%) 

Coarse Sand 
(%) pH 

ECe  
(dS m−1) 

0–0.5 5 3 4 22 65 8.5 1.8 
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2.3. Laboratory Experiments 

Seven NaCl solutions with different electrical conductivity (0.02, 0.2, 0.5, 3.6, 5.3, 7.2, and 8.2 dS 
m−1) were prepared for the infiltration experiments. The soil was initially mixed with a small amount 
(about 0.05 m3 m−3) of the same water as used in the infiltration experiments to prevent water 
repellency. The soil was repacked into a plexiglas soil columns, 0.12 m in diameter and 0.15 m long 
(Soil Measurement System, Tucson, Arizona), to the average dry bulk density encountered in the 
field (about 1450 kg m−3).  

The 5TE sensor was used for observations [23]. It is a multifunctional sensor measuring Ka, ECa, 
and T (for more details, see appendix.1). The measuring frequency is 70 MHz and it is a three-rod 
type sensor with 0.052 m long prongs and 0.01 m spacing between adjacent prongs [23,40]. The 5TE 
probe was inserted vertically in the center of the column. Upward infiltration experiments were 
carried out by stepwise pumping a known volume of a NaCl solution (45 mL) with a precise syringe 
pump from the bottom of the column. Twenty minutes after each injection, three measurements of 
Ka, ECa, and temperature were taken and averaged. This procedure was repeated until saturation 
(0.40 m3 m−3) was reached. Four hours after reaching saturation, measurements were again taken and 
pore water was extracted from the bottom of the column with a manual vacuum pump. Electrical 
conductivity of extracted pore water ECpm was measured with a conductivity meter. In total, seven 
upward infiltration experiments were conducted, one for every NaCl solution. 

2.4. Field Measurements  

Four 5TE sensors were installed between date-palm trees at four soil depths (0.10, 0.15, 0.30, and 
0.45 m). The 5TE probes were connected to a Decagon Em50 data logger. The DataTrac3 software 
version 3.15 [23] was used to download collected data from the Em50. Volumetric soil water content 
and pore electrical conductivity were estimated using standard parameters of the Ledieu et al. [7] 
and Hilhorst [8] models, respectively. In addition, soil samples were taken by hand auger at the same 
depth of sensor installation on 24 April and 3 October 2018. Gravimetric water content θm and 
electrical conductivity of saturated soil paste extract (ECe) were measured in laboratory according to 
USDA standards. The soil dry bulk density (Bd) was measured in the field using the cylinder method 
at five soil depths (0.1 m depth intervals to 0.5 m). During April 2018, the average soil Bd was equal 
to 1.43 g cm−3 and varied from 1.3 to 1.6 g cm−3.  

3. Results 

3.1. Soil Water Content 

Figure 3 presents the relationship between Ka and observed θm with different salinity levels 
(ECp, dS m−1) measured during the upward infiltration experiments. For largest ECp, ECa did not 
exceed 2.5 dS m−1. It is seen that ECa considerably affects the Ka readings, especially for high ECp. 
This can lead to significant errors for both Ka and ECa, indicating that 5TE probe readings need to be 
corrected when used in saline soils. The overestimation of Ka as ECa increases has been described by 
several authors (e.g., [19,27]). 

In Figure 4, Ka and K’ (corrected with Equation (2)) for two ECp levels (3 and 9.8 dS m−1) are 
plotted against measured θm. K’ values are very close to Ka when ECp ≤ 3 dS m−1, especially at low θ 
(θ ≤ 0.15 m3 m−3 and ECa ≤ 0.43 dS m−1). However, for ECp = 9.8 dS m−1, the difference between Ka 
and K’ is more pronounced, especially for θ ≥ 0.15 m3 m−3 and ECa ≥ 0.75 dS m−1. 
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Figure 3. Apparent dielectric permittivity (Ka) vs. measured volumetric water content (θm) for various 
pore electrical conductivity (ECp) levels (dS m−1). 

 
Figure 4. Relationship Ka-θm (open circles) and K’-θm (filled circles) using the 5TE sensor for ECp = 3 
dS m−1 (a) and ECp = 9.8 dS m−1 (b). 

The calibrated parameters using laboratory data for CAL-Ka and CAL-Kar approaches are 
presented in Table 2. For all models tested under laboratory conditions, RMSE increased with ECp. 
Soil water content from CAL-Kar approach matched well measured θm for ECp ≤ 3 dS m−1 (ECa < 0.7 
dS m−1) and gave the best θ estimation compared to the Ledieu et al. [13] model and the soil-specific 
calibration CAL-Ka. However, for ECp ≥ 6.8 dS m−1, the CAL-Ka approach gave lower RMSE 
compared to the CAL-Kar model. For high ECp (≥ 6.8 dS m−1), the performance of the CAL-Kar model 
deteriorated. 

Table 2. Root mean square error (RMSE ,m3 m3) ,determination coefficient (R2) and coefficient of 
variation (CV,%) of estimated soil water content using Ledieu et al. [7], standard calibration (CAL-
Ka) and permittivity corrected model (CAL-Kar) for different water pore electrical conductivity 
(ECp). 

Laboratory Calibration 
ECp (dS m−1)  Ledieu et al. (1986) CAL-Ka CAL-Kar 

 Fit Equation (4) θ = 0.16 √Ka1-0.30 θ = 0.18√K’2-0.33 
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ECp ≤ 3 

 
ECp = 6.8 

 
6.8 < ECp ≤ 10.5 

 

RMSE 
R2 

RMSE 
R2 

RMSE 
R2 

0.06 
0.93 
0.08 
0.73 
0.09 
0.77 

0.05 
0.95 
0.06 
0.87 
0.07 
0.85 

0.04 
0.95 
0.10 
0.50 
0.13 
0.39 

Mean RMSE 0.08 0.06 0.09 
Mean R2 0.8 0.9 0.6 
CV (%) 26.5 20 19.8 

Field calibration 
 Fit  θ = 0.15 √Ka-0.26 θ = 0.20√K’-0.37 

ECa3 ≤ 0.7 
and 

1.7 ≤ECe4≤ 4.1 

RMSE 
(m3 m−3) 

- 0.04 0.03 

R2 - 0.94 0.97 
CV (%) - 23 24 

Field validation 

ECa ≤ 0.7 
and 

1.7 ≤ECe≤ 4.1 

RMSE 
(m3 m−3) 

0.1 0.060 0.060 

R2 0.80 0.88 0.97 
CV (%) 27 21 24 

1 Apparent soil permittivity, 2 Corrected apparent soil permittivity, 3 Soil apparent electrical conductivity,  
 4 Electrical conductivity of saturated soil paste extract 

3.2. Field Validation of Soil Water Content Models 

During field experiments, Ka measured by the four 5TE probes varied from 6.5 to 11, ECa from 
0.17 to 0.75 dS m−1, and measured soil moisture (θm) from 0.10 to 0.24 m3 m−3. According to R2 of field 
validation results (Table 2), the best model to predict θ under field conditions is CAL-Kar followed 
by CAL-Ka. However, RMSE analysis indicates that there is no significant difference between 
observed and estimated θ using both approaches, implying that both predicted θ accurately for ECa 
≤ 0.7 dS m−1. 

From Figure 5, a slight underestimation of the different models is observed and this is more 
pronounced for the Ledieu et al. [7] model. The underestimation can be related to adsorbed water, 
resulting in a lower amount of mobile water in the soil, thus reducing the Ka readings (detection) by 
the 5TE sensor and eventually resulting in underestimation of Ka [41,42]. The difference between 
observed and predicted θ may also be attributed to variability in soil structure, bulk density, presence 
of stones, roots, and other inert material in the core samples. The difference may also be linked to the 
spatial variability of θ between sampled and monitored soils. Similar findings have been reported 
for mineral soils using the 5TE sensor [41], for Luvisol using the 5TM capacitance sensor [42], and 
using the ECH2O sensor in sandy soil [43]. The success of CAL-Ka and CAL-Kar models to calculate 
θ at field conditions is closely linked to the low range of ECa data measured by the 5TE sensor, below 
0.7 dS m−1, during the period of investigation. 

 
Figure 5. Estimated soil water content (θ) vs. measured (θm) using CAL-Kar approach (a), CAL-Ka 
approach (b) and Ledieu et al. [13] model (c) under field conditions, solid line gives the 1:1 
relationship. 
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For the same range of soil salinity, RMSE was higher for the field as compared to laboratory 
data. For laboratory experiments, soil was crushed, washed, and passed through a 2 mm sieve. This 
means that its structure was changed as well as the pore size distribution, and some of the organic 
matter may have been removed. This allows more mobile water compared to field conditions [44]. 
As well, for field conditions, observed Bd profiles are not uniform and may vary with time. In contrast 
to the controlled laboratory experiments (e.g., constant Bd), the field Bd spatial and temporal 
variation will induce an additional error when laboratory models are used to estimate θ.  

We used the field data to calibrate the CAL-Ka and CAL-Kar models, the calibrated parameters 
for the models are presented in Table 2 (Field calibration). The RMSE decreased from 0.06 to 0.04 
m3m−3 and from 0.06 to 0.03 m3 m−3 for CAL-Ka and CAL-Kar, respectively. Thus, the CAL-Kar 
approach gave better field predictions of θ. Similarly, Kinzli et al. [45] reported that field calibration 
was most successful for sandy soils. According to this finding, we may support the earlier conclusion 
that the permittivity corrected (CAL-Kar) model is recommended under field conditions if ECa is 
below 0.75 dS m−1. However, the Ledieu et al. [7] model cannot be used safely under field conditions 
in the case when soil specific calibration is not available.  

3.3. Soil Pore Electrical Conductivity (ECp) 

3.3.1. ECp Laboratory Calibration 

Table 3 presents the RMSE for the different models. All models showed good performance in 
the 0–3 dS m−1 range, except Hilhorst with (K0 = 6) and MHK with K0 = 4.1. Moreover, RMSE results 
(Table 3), showed an increase of the range of default H model validity until ECp = 6.8 dS m−1. This 
finding can be linked to the higher operating frequency of 5TE (70 MHz) compared to the capacitance 
sensor used by Hilhorst (30 Mhz). Hilhorst reported that the model assumption ceases to be accurate 
at higher salinity as ECp significantly deviates from that of free water.  

Table 3. Root mean square error (RMSE, dS m−1) of estimated pore electrical conductivity (ECp) using 
Hilhorst (K0 = 4.1, 3.3, and 6), modified Hilhorst according to Kargas et al. [6] (MHK) (K0= 4.1 and 3.3), 
and modified Hilhorst according to Bouksila et al. [18] (MHB) models. 

ECp (dS m−1) Hilhorst (2000) MHK MHB 
Soil parameter-K0 K0 = 4.1 K0 = 3.3 1 K0 = 6 K0 = 4.1 K0 = 3.3 1 Best fit K0 = f (ECa2) 

ECp ≤ 3 0.29 0.14 0.83 0.88 0.34 0.044 
ECp = 6.8 0.57 0.21 1.7 6.3 3.8 0.050 

6.8 < ECp ≤ 10.5 1.48 0.99 3.06 - - 0.054 
1. K0 soil parameter determined experimentally according to the method in the Wet sensor manual using 
distilled water. 2 Soil apparent electrical conductivity.  

From the results presented in Table 3, the ECp limit for accurate measurements seems to be 6.8 
dS m−1. Similar results were reported by Scudiero et al. [40], using the 5TE sensor and ECp limit <10 
dS m−1 with RMSE equal to 0.68 dS m−1. Using the H model with K0 value recommended in the 
Decagons manual (K0 = 6) showed a larger RMSE for all salinity levels compared the default 
parameter (K0 = 4.1). The H model with K0 = 3.3 (determined experimentally according to the WET 
manual) gave better results for the three salinity ranges. Persson [13] stated that the H model using a 
fitted soil parameter gives ECp values statistically similar to other model results (e.g., [3,10,46]). 

Focusing on the modified Hilhorst model using the MHK approach with K0 = 4.1, one can 
observe that the RMSE is at maximum, especially for ECp ≥ 6.8 dS m−1. Kargas el al. [6] validated this 
approach using a lower salinity level (ECp ≤ 6 dS m−1). According to our results (Figure 7), an 
overestimation of the H model, especially at ECp ≥ 3 dS m−1, is observed. Similarly, Visconti et al. [19] 
showed an overestimation of ECp in the range of 0–10 dS m−1 and Scudiero et al. [40] showed an 
overestimation of ECp in the range 3–10 dS m−1, both working with the 5TE sensor and the H model. 
In the present study, the H model overestimated ECp, thus using the MHK approach will not 
improve results.  
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The observed overestimation by the H model might be due to K0, which was assumed to be equal 
to 4.1. In addition, one should note that the H model does not consider solid particle surface 
conductivity, which could contribute to the ECp error [17]. From Table 3, decreasing K0 from 4.1 to 
3.3 for both the H and MHK model leads to a significant decrease of RMSE, two times lower than the 
default. The H model seems to be more dependent on the soil parameter K0 than on Ka and ECa. 

 
Figure 6. Best fit soil parameter (K0) vs. bulk soil electrical conductivity (ECa). 

K0 estimated from the best fit approach for the different salinity levels is plotted against ECa in 
Figure 6. The K0 range varied between 1.29 and 3.2 with a mean of 3.0, which is similar to the K0 
determined experimentally using distilled water (K0 = 3.3).  

At saturation, ECa was equal to 0.32 dS m−1 and 2.4 dS m−1 and Ka was equal to 15 and 19 for the 
lowest (2 dS m−1) and the highest (10.5 dS m−1) observed ECp, respectively. According to Figure 6, K0 
decreases with increasing salinity. Similar to [18], our results showed that K0 is not constant, but 
depends on ECa and that a third-order polynomial fitted the K0–ECa relationship rather well (R2 ≥ 
0.95). K0 = f (ECa) in Figure 6, was used in the H model to predict ECp. Compared to the H model, 
for the individual ECp levels, using the MHB model, RMSE decreased significantly. 

Figure 7 shows observed and predicted ECp using the H model with three different K0 and the 
MHK and MHB approaches, respectively. All model performances, are approximately the same for 
ECp ≤ 3 dS m−1, except when using K0 = 6 and K0 = 4.1 for H and MHK models, respectively.  

Based on the laboratory results, the MHB approach improved the H model and gave accurate 
estimation of ECp with R2 = 0.99 for all salinity levels. Thus, for high soil salinity (6.8 dS m−1 ≤ ECp ≤ 
10.5 dS m−1), the MHB approach is recommended for achieving optimal accuracy of ECp 
measurements. For lower ECp (≤3 dS m−1), the standard H model is sufficient. For high ECp, the MHK 
approach failed to reproduce the observed ECp correctly and the approach is not recommended 
based on the results of our study. Further studies for different soil types are needed so that this 
combined approach in predicting ECp can be validated. 
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Figure 7. Estimated pore electrical conductivity (ECp) vs. measured for different model tested for 
laboratory conditions. 

3.3.2. Field Validation of ECp Models 

Unfortunately, we do not have field observed ECp to validate and statistically compare the 
different models. Instead, we determined a linear relationship (ECp = f (ECe)) for different calculated 
ECp, using the H, MHK, and MHB models and 5TE measurements, with observed field ECe. Several 
researchers have studied relationships between ECe and ECp, e.g., [3], showing that the relationship 
is strongly linear. The relationship (ECp = f (ECe)) with the highest R2 = 0.9 was chosen to predict the 
field ECp values (ECpobs). During the investigation period, ECe was determined from soil samples, 
according to the USDA standard (collected at the same depth as the location of the 5TE sensors), 
ranging between 1.7 and 4.1 dS m−1. The relatively low soil salinity is due to a rainfall observed in the 
field one day before soil sampling.  

Table 4. Root mean square error (RMSE, dS m-1) and determination coefficient (R2) of Hilhorst (K0 = 
4.1, 3.3, and 6), modified Hilhorst according to Kargas et al. [6] (MHK) (K0 = 4.1 and 3.3) and modified 
Hilhorst according to Bouksila et al. [18] (MHB) models field validation. 

 Hilhorst (2000) MHK MHB 
ECa2 ≤ 0.7 and    1.7 ≤ ECe3 ≤ 4.1 K0 = 4.1 K0 = 3.31 K0 = 6 K0 = 4.1 K0 = 3.31 Best fit K0 = f (ECa) 

RMSE (dS m−1) 0.82 0.70 10 1.8 1.34 0.30 
R2 0.53 0.73 0.26 0.56 0.77 0.90 

1. K0 soil parameter determined experimentally according to the method in the Wet sensor manual using 
distilled water. 3 Soil apparent electrical conductivity,  4 Electrical conductivity of saturated soil paste extract 

The observed ECpobs obtained from the best fit relationship is plotted against the estimated ECp 
for the different models in Figure 8. The H model with K0 = 6.6 was not included in the figure since it 
gave out of range values. The ECp estimation with MHB approach appears uniformly scattered about 
the 1:1 line. On the other hand, the H model with K0 = 3.3 shows a cloud of points near the 1:1 line.  

Compared to laboratory results, for the same ECa range (ECa ≤ 0.7 dS m−1) (Table.4), observed 
errors are higher for the field validation. The RMSE increased for all models. Errors are mainly related 
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to a number of factors absent in the laboratory but present under field conditions. Due to this reason, 
a methodological approach composed by laboratory calibration and field validation is optimal.  

 
Figure 8. Estimated ECp vs. observed under field conditions. 

The MHB approach presents a significant improvement of the H model, especially at high ECp 
(Table.4). The H and MHK model fit is acceptable for field and laboratory conditions only for ECp ≤ 
3dS m−1 while the MHB approach is acceptable for field conditions and it can be safely used for sandy 
soil and ECp ≤ 7 dS m−1. 

Since variation and uncertainties in the field are higher, it is recommended to validate the 
calibrated models with field data. According to our results, the H model with K0 = 6 is not 
recommended either with laboratory nor field data. However, the reduction of K0 to 3.3 increased the 
performance of the model and it can be safely used for ECp < 3 dS m−1. For ECp > 3 dS m−1, the MHK 
approach did not improve the H model with RMSE more than 1 dS m−1 and it is not recommended. 
Thus, for achieving optimal accuracy of ECp measurements, the MHB approach is recommended for 
ECp ≤ 7dS m−1. 

4. Conclusions  

In this study, the 5TE sensor performance for volumetric soil water content (θ) and soil pore 
electrical conductivity (ECp) estimation was investigated under laboratory and field conditions. First, 
two procedures for θ estimation based on a linear relationship of √Ka-θm (CAL-Ka approach) and 
√K’-θm (CAL-Kar approach) were investigated. Using the CAL-Kar approach, the effect of soil 
apparent electrical conductivity (ECa) on the real part of the complex dielectric permittivity (K’) was 
considered. In addition, the Ledieu et al. [7] relationship was used for comparison purposes. A site-
specific validation of CAL-Ka and CAL-Kar models using 5TE field subset data and θ from soil 
samples at different depth was performed. Secondly, 5TE performance for soil salinity assessment 
was investigated using the H linear model according to correction proposed by Kargas et al. [6] (MHK 
model), and Bouksila et al. [17] (MHB model). The default value of soil parameter K0 = 4.1 and K0 = 6 
recommended in the 5TE manual was used for comparison. 
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For soil water content, calibration considering the ECa effect on K’ increased the performance of 
the 5TE sensor under field conditions for ECa ≤ 0.75 dS m−1 (R2 = 0.97, RMSE = 0.06 m3 m−3). However, 
the error in predicting θ was highest (0.10 m3 m−3) when the Ledieu et al. [7] model was used. Indeed, 
this model cannot be safely used under field conditions. Thus, we conclude that field calibration of 
the 5TE sensor is recommended for accurate soil water content estimation. Soil pore electrical 
conductivity calibration results, show that the 5TE sensor limit using the default H model is equal to 
6.8 dS m−1 with RMSE = 0.57 dS m−1 and MRE = 9%. The 5TE sensor manual value (K0 = 6) is not 
recommended. However, K0 = 3.3 increases model performance over the investigated salinity range. 
The MHK approach, introducing the permittivity correction in the H model, failed to reproduce the 
observed ECp correctly and it is not recommended. In the next step, considering the effect of ECa on 
the K0 soil parameter in the H model (MHB approach), it was found that the standard model improves 
and gives accurate estimation of ECp with R2 equal to 0.99 for all salinity levels. Under field 
conditions, the MHB approach gives the best results for sandy soils. 

It is a challenge to perform real-time monitoring of irrigated land under high-saline conditions 
to provide sustainable agriculture and farmer income increase. Using θ and ECp observations, it was 
shown that a methodological approach composed of a laboratory calibration and field validation is 
necessary. Further studies, for different soil types, are needed to validate this combined approach in 
predicting ECp. 
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Appendix N°1:  

Soil parameter acronyms, data source, sensor specification and models used in the present work 

Soil parameter Acronym Data Source Sensor/Method 

Soil dry bulk density Bd Measured 
Cylinder method- United 

States Department of 
Agriculture (USDA) 

Soil pH pH Measured pH-meter 
Apparent soil permittivity Ka Measured 5TE-probe 

Soil parameter K0 Estimated 5TE-probe 
Dielectric constant of pore water Kw Estimated 5TE-probe 

Corrected apparent soil permittivity K’ Estimated 5TE-probe 
Soil temperature T Measured 5TE-probe 

Electrical conductivity of saturated soil paste 
extract 

ECe Measured EC-meter/USDA method 

Soil apparent electrical conductivity ECa Measured 5TE-probe 
Irrigation water electrical conductivity ECiw Measured EC-meter 

Measured soil water content θ௠ Measured Gravimetric method-USDA 
Estimated volumetric water content θ Estimated θ –Models (see Figure 1) 

Laboratory measured pore water electrical 
conductivity 

ECpm Measured EC-meter 
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Field observed pore water electrical 
conductivity 

ECpobs Measured  
ECpobs = a ECe + b (see 

Figure 2) 
Pore water electrical conductivity ECp Estimated ECp-Models (see Figure 2) 

5TE sensor specification 
Type Specifics 

Sensor type FDR (Frequency Domain Reflectometry) 
Power supply +3.6 to +15 V 

Frequency 70 MHz 

Size 
Length 10.9 cm (4.3 in) 
Width 3.4 cm (1.3 in) 
Height 1.0 cm (0.4 in) 

Measurement volume 300 cm3 
Direct output data Ka, ECa, and T 

Indirect output data θ and ECp 
Range (Ka, ECa) 1–80, 0–7 dS m–1 

Resolution (Ka, ECa) 0.1, 0.01 dS m–1 
Accuracy (Ka, ECa) ±3%, ±10% 

Models  

CAL-Ka (see Figure 1) 
Calibration of soil water content model without 

permittivity correction  

CAL-Kar (see Figure 1) 
Calibration of soil water content model with 

permittivity correction according to Kargas et al. (2017) 
H (see Figure 2) Standard Hilhorst (2000) model for ECp prediction  

MHK (see Figure 2) 
Modified Hilhorst model according to Kargas et al. 

(2017) for ECp prediction 

MHB (see Figure 2) 
Modified Hilhorst model according to Bouksila et al. 

(2008) for ECp prediction  
 Model performance statistic tool 

RMSE Root Mean Square Error 
R2 Coefficient of determination 

MRE Mean Relative Error 
CV Coefficient of Variation 
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