The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo of Hakim Abdi

Hakim Abdi


Photo of Hakim Abdi

Agricultural productivity in relation to climate and cropland management in West Africa


  • Altaaf Mechiche-Alami
  • Abdulhakim Abdi

Summary, in English

The climate of West Africa is expected to become more arid due to increased temperature and uncertain rainfall regimes, while its population is expected to grow faster than the rest of the world. As such, increased demand for food will likely coincide with declines in agricultural production in a region where severe undernutrition already occurs. Here, we attempt to discriminate between the impacts of climate and other factors (e.g. land management/degradation) on crop production across West Africa using satellite remote sensing. We identify trends in the land surface phenology and climate of West African croplands between 2000 and 2018. Using the combination of a an attribution framework and residual trend anlaysis, we discriminate between climate and other impacts on crop productivity. The combined effect of rainfall, land surface temperature and solar radiation explains approximately 40% of the variation in cropland productivity over West Africa at the 95% significance level. The largest proportions of croplands with greening trends were observed in Mali, Niger and Burkina Faso, and the largest proportions with browning trends were in Nigeria, The Gambia and Benin. Climate was responsible for 52% of the greening trends and 25% of the browning trends. Within the other driving factors, changes in phenology explained 18% of the greening and 37% of the browning trends across the region, the use of inputs and irrigation explained 30% of the greening trends and land degradation 38% of the browning trends. These findings have implications for adaptation policies as we map out areas in need of improved land management practices and those where it has proven to be successful.


  • Centre for Environmental and Climate Science (CEC)
  • Dept of Physical Geography and Ecosystem Science

Publishing year





Scientific Reports



Document type

Journal article


Nature Publishing Group


  • Physical Geography
  • Geosciences, Multidisciplinary
  • Climate Research
  • Remote Sensing


  • Agriculture
  • West Africa
  • Remote sensing
  • Earth observation
  • Land-use
  • Africa
  • Food security




  • Food security in a changing climate: The role of cropland intensification and land acquisitions across Africa


  • ISSN: 2045-2322