The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

Drought impact in the Bolivian Altiplano agriculture associated with the El Niño-Southern Oscillation using satellite imagery data

Author

  • Claudia Canedo-Rosso
  • Stefan Hochrainer-Stigler
  • Georg Pflug
  • Bruno Condori
  • Ronny Berndtsson

Summary, in English

Drought is a major natural hazard in the Bolivian Altiplano that causes large agricultural losses. However, the drought effect on agriculture varies largely on a local scale due to diverse factors such as climatological and hydrological conditions, sensitivity of crop yield to water stress, and crop phenological stage among others. To improve the knowledge of drought impact on agriculture, this study aims to classify drought severity using vegetation and land surface temperature data, analyse the relationship between drought and climate anomalies, and examine the spatiooral variability of drought using vegetation and climate data. Empirical data for drought assessment purposes in this area are scarce and spatially unevenly distributed. Due to these limitations we used vegetation, land surface temperature (LST), precipitation derived from satellite imagery, and gridded air temperature data products. Initially, we tested the performance of satellite precipitation and gridded air temperature data on a local level. Then, the normalized difference vegetation index (NDVI) and LST were used to classify drought events associated with past El Niño-Southern Oscillation (ENSO) phases. It was found that the most severe drought events generally occur during a positive ENSO phase (El Niño years). In addition, we found that a decrease in vegetation is mainly driven by low precipitation and high temperature, and we identified areas where agricultural losses will be most pronounced under such conditions. The results show that droughts can be monitored using satellite imagery data when ground data are scarce or of poor data quality. The results can be especially beneficial for emergency response operations and for enabling a proactive approach to disaster risk management against droughts.

Department/s

  • Division of Water Resources Engineering
  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World
  • LTH Profile Area: Water

Publishing year

2021

Language

English

Pages

995-1010

Publication/Series

Natural Hazards and Earth System Sciences

Volume

21

Issue

3

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Environmental Sciences related to Agriculture and Land-use
  • Oceanography, Hydrology, Water Resources

Status

Published

ISBN/ISSN/Other

  • ISSN: 1561-8633