The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

Precipitation variability and its relation to climate anomalies in the Bolivian Altiplano

Author

  • Claudia Canedo-Rosso
  • Cintia B. Uvo
  • Ronny Berndtsson

Summary, in English

Precipitation variability over the Bolivian Altiplano is strongly affected by local climate and temporal variation of large-scale atmospheric flow. Precipitation is the main water source for drinking water and agricultural production. For this reason, a better understanding of precipitation variability and its relation with climate phenomena can provide important information for forecasting of droughts and floods, disaster risk reduction, and improvement of water management. We present results of an analysis of the austral summer precipitation variability at six locations in the Bolivian Altiplano and connections to climate variability. For this purpose, the variability of the summer precipitation was related to El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Antarctic Meridional Mode (AMM), and Atlantic Multidecadal Oscillation (AMO). A statistically significant correlation between climate indices and precipitation was found in various spectral frequencies and power. The variability of the summer precipitation was associated with the climate indices using a band-pass filter, representing the signal at a particular period of time. For the ENSO, band-pass filtering was applied for Niño3.4 and Niño3 at band ~2–7 years, for NAO band ~5–8 years, and for AMM band ~10–13 years. The variability of summer precipitation was related to all studied climate modes by negative relationships. The physical explanation for this is first the dry air transported from the Pacific Ocean to the Altiplano during El Niño events. Second, NAO and ENSO are dynamically linked through teleconnections. Third, the intertropical convergence zone (ITCZ) shifts are northwards during the warm phases of AMM. These physical mechanisms lead to a reduced austral summer precipitation associated with positive phases of the ENSO, NAO, and AMM. The results can be used to better forecast precipitation in the Bolivian Altiplano and provide support for the development of policies to improve climate resilience and risk management of water supply.

Department/s

  • Division of Water Resources Engineering
  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World

Publishing year

2019

Language

English

Publication/Series

International Journal of Climatology

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Climate Research

Keywords

  • AMM
  • AMO
  • austral summer precipitation
  • climate phenomena
  • ENSO
  • multivariate analysis
  • NAO
  • PDO
  • wavelet analysis

Status

Published

ISBN/ISSN/Other

  • ISSN: 0899-8418