The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

Efficient organic mulch thickness for soil and water conservation in urban areas

Author

  • Bing Wang
  • Jianzhi Niu
  • Ronny Berndtsson
  • Linus Zhang
  • Xiongwen Chen
  • Xiang Li
  • Zhijun Zhu

Summary, in English

The use of organic mulch is important for urban green applications. For urban areas in arid and semiarid regions receiving short high-intensive rainfall, rainfall characteristics, and soil slope play an important role for mulch functioning. These properties of mulch were studied. For this purpose, rainfall simulation experiments using organic mulching were conducted in Jiufeng National Forestry Park to analyze the influence of organic mulch under different slope and heavy rainfall events. The results showed that soil water content displayed a decreasing tendency with increasing mulch application. Compared to bare soil, a mulch application of 0.25 kg/m2 and 0.50 kg/m2 led to maximum soil water content and maximum runoff decrease occurred for 0.50 kg/m2 mulch. Higher application rate of mulch displayed less soil water content and greater runoff. The runoff amount and runoff generation rate decreased by 28–83% and 21–83%, respectively, as compared to bare soil. With a mulch application of 0.25–1.00 kg/m2, soil drainage accounted for 56–60% of total rainfall. Overall, an efficient mulch application was found to be 0.25–0.50 kg/m2. The results of this study are relevant for arid and semiarid urban regions that experience heavy rainfall.

Department/s

  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World
  • Division of Water Resources Engineering
  • LTH Profile Area: Water

Publishing year

2021-12

Language

English

Publication/Series

Scientific Reports

Volume

11

Issue

1

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Landscape Architecture

Status

Published

ISBN/ISSN/Other

  • ISSN: 2045-2322