The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas

Author

  • Hossein Hashemi
  • Cintia Bertacchi Uvo
  • Ronny Berndtsson

Summary, in English

The impact of future climate scenarios on surface and groundwater resources was simulated using a modeling approach for an artificial recharge area in arid southern Iran. Future climate data for the periods of 2010–2030 and 2030–2050 were acquired from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, A2, and B1. These scenarios were adapted to the studied region using the delta-change method. The modified version of the HBV model (Qbox) was used to simulate runoff in a flash flood prone catchment. The model was calibrated and validated for the period 2002– 2011 using daily discharge data. The projected climate variables were used to simulate future runoff. The rainfall–runoff model was then coupled to a calibrated groundwater flow and recharge model (MODFLOW) to simulate future recharge and groundwater hydraulic head. The results of the rainfall–runoff modeling showed that under the B1 scenario the number of floods might increase in the area. This in turn calls for a proper management, as this is the only source of fresh water supply in the studied region. The results of the groundwater recharge modeling showed no significant difference be- tween present and future recharge for all scenarios. Owing to that, four abstraction and recharge scenarios were assumed to simulate the groundwater level and recharged water in the studied aquifer. The results showed that the abstraction scenarios have the most substantial effect on the groundwater level and the continuation of current pumping rate would lead to a groundwater decline by 18 m up to 2050.

Department/s

  • MECW: The Middle East in the Contemporary World
  • Division of Water Resources Engineering
  • Centre for Advanced Middle Eastern Studies (CMES)
  • LTH Profile Area: Water

Publishing year

2014

Language

English

Pages

11797-11835

Publication/Series

Hydrology and Earth System Sciences Discussions

Volume

11

Issue

10

Document type

Journal article

Publisher

Copernicus GmbH, Copernicus GmbH

Topic

  • Other Social Sciences
  • Water Engineering

Keywords

  • Iran
  • Recharge
  • Numerical modeling
  • Climate change
  • Groundwater

Status

Published

ISBN/ISSN/Other

  • ISSN: 1812-2108