The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile photo of Ronny Berndtsson

Ronny Berndtsson

Professor, Dep Director, MECW Dep Scientific Coordinator

Profile photo of Ronny Berndtsson

Modelling reactive solute transport from groundwater to soil surface under evaporation


  • K. Nakagawa
  • T. Hosokawa
  • S. -I. Wada
  • K. Momii
  • K. Jinno
  • Ronny Berndtsson

Summary, in English

Two-stage soil column experiments involving capillary rise and evaporation were conducted to improve understanding of salt and water movement from groundwater to soil surface. In total, 64 soil columns were placed in a tank partly filled with water in order to mimic the groundwater table in soil. Each soil column was analysed by dividing it into 27 segments to analyse pore water and ion distribution in both liquid and solid phases after prescribed time periods. The water and solute transport behaviour in the columns was simulated by a one-dimensional numerical model. The model considers the cation exchange of four cations (Ca2+, Mg2+, Na+ and K+) in both dissolved and exchangeable forms and anion retardation for one anion (SO42-). The Cl- is treated as a conservative solute without retardation. The numerical results of the cation distributions in both liquid and solid phases, anions in the liquid phase, and volumetric water contents were in relatively good agreement with the experimental results. To achieve a better model fit to these experimental results, a variable cation exchange capacity (CEC) distribution may be required. When a simple calculation scheme for evaporation intensity was applied, better predictions in terms of daily variation were achieved. The soil water profile displayed a steady state behaviour approximately 10 days after the start of the experiments. This was in agreement with numerical results and calculated distribution of velocity vectors. The final model includes cation exchange, anion retardation, and unsaturated water flow. Consequently, the model can be applied to study sequential irrigation effects on salt accumulation or reactive transport during major ion concentration changes in groundwater. Copyright (C) 2009 John Wiley & Sons, Ltd.


  • Centre for Advanced Middle Eastern Studies (CMES)
  • MECW: The Middle East in the Contemporary World
  • Division of Water Resources Engineering
  • LTH Profile Area: Water

Publishing year







Hydrological Processes





Document type

Journal article


John Wiley & Sons Inc.


  • Water Engineering
  • Other Social Sciences


  • salinization
  • cation exchange
  • evaporation
  • soil column experiment
  • reactive transport modelling




  • ISSN: 1099-1085