The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Desertification in Iran

A desert in the Isfahan Province in Iran
Photo: Mohammad Asadi on Unsplash

Together with Sayed Fakhreddin Afzali (Shiraz University), Ali Khanamani (Yazd University) and Ehsan Kamali Maskooni (Islamic Azad University), CMES deputy director Ronny Berndtsson has co-authored the article "Quantitative assessment of environmental sensitivity to desertification using the modified MEDALUS model in a semiarid area", available online in the journal Sustainability.

Abstract

Iran is mainly located in the arid and semiarid climate zone and seriously affected by desertification. This is a severe environmental problem, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Process understanding of this phenomenon through the evaluation of important drivers is, however, a challenging work. The main purpose of this study was to perform a quantitative evaluation of the current desertification status in the Segzi Plain, Isfahan Province, Iran, through the modified Mediterranean Desertification and Land Use (MEDALUS) model and GIS. In this regard, five main indicators including soil, groundwater, vegetation cover, climate, and erosion were selected for estimating the environmental sensitivity to desertification. Each of these qualitative indicators is driven by human interference and climate. After statistical analysis and a normality test for each indicator data, spatial distribution maps were established. Then, the maps were scored in the MEDALUS approach, and the current desertification status in the study area from the geometric mean of all five quality indicators was created. Based on the results of the modified MEDALUS model, about 23.5% of the total area can be classified as high risk to desertification and 76.5% classified as very high risk to desertification. The results indicate that climate, vegetation, and groundwater quality are the most important drivers for desertification in the study area. Erosion (wind and water) and soil indices have minimal importance. 

Read and download the full article here

Ronny's staff page

Photo by Mohammad Asadi on Unsplash