The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Irrigation Water Risk Assessment in Tunisia

Cover of the journal Plants

Together with Dalila Souguir (University of Carthage), Sourour Mzahma (University of Carthage), Hanen Filali (University of Carthage), Mohamed Hachicha (University of Carthage), CMES Deputy Director Ronny Berndtsson has authored the article "Vicia–Micronucleus Test Application for Saline Irrigation Water Risk Assessment", available in the journal Plants.

In view of climate change, increasing soil salinity is expected worldwide. It is therefore important to improve prediction ability of plant salinity effects. For this purpose, brackish/saline irrigation water from two areas in central and coastal Tunisia was sampled. The water samples were classified as C3 (EC: 2.01–2.24 dS m−1) and C4 (EC: 3.46–7.00 dS m−1), indicating that the water was questionable and not suitable for irrigation, respectively. The water samples were tested for their genotoxic potential and growth effects on Vicia faba seedlings. Results showed a decrease in mitotic index (MI) and, consequently, growth parameters concomitant to the appearance of micronucleus (MCN) and chromosome aberrations when the water salinity increased. Salt ion concentration had striking influence on genome stability and growth parameters. Pearson correlation underlined the negative connection between most ions in the water inappropriate for irrigation (C4) and MI as well as growth parameters. MI was strongly influenced by Mg2+, Na+, Cl, and to a less degree Ca2+, K+, and SO42−. Growth parameters were moderately to weakly affected by K+ and Ca2+, respectively. Re-garding MCN, a very strong positive correlation was found for MCN and K+. Despite its short-term application, the Vicia-MCN Test showed a real ability to predict toxicity induced by salt ions confirming that is has a relevant role in hazard identification and risk assessment of salinity effects.

This publication is part of the FASTER project.

Read and download the article here

Ronny Berndtsson's research profile